2022年北京林业大学硕士研究生考试科目601《数学分析》考试大纲
2022年北京林业大学硕士研究生考试科目601《数学分析》考试大纲内容如下,更多考研资讯请关注我们网站的更新!敬请收藏本站,或下载我们的考研派APP和考研派微信公众号(里面有非常多的免费考研资源可以领取,有各种考研问题,也可直接加我们网站上的研究生学姐微信,全程免费答疑,助各位考研一臂之力,争取早日考上理想中的研究生院校。)
微信,为你答疑,送资源
2022年北京林业大学硕士研究生考试科目601《数学分析》考试大纲 正文
一、大纲综述数学分析是大学数学系本科学生的最基本课程之一,也是多数理工科专业学生的必修基础课。为帮助考生明确考试范围和有关要求,特制订《数学分析》考试大纲。
《数学分析》考试大纲根据北京林业大学数学与应用数学本科《数学分析》教学大纲编制而成,适用于报考北京林业大学数学学科各专业(基础数学、概率论与数理统计、计算数学、应用数学)硕士学位研究生的考生。参考书目以华东师范大学数学系编写的教材为主,其他两个参考书目为辅。
二、考试内容
1.实数集与函数
(1)确界概念,确界原理
(2)函数概念与运算,初等函数
2. 数列极限
(1) 数列极限的ε一N定义
(2) 收敛数列的性质
(3) 数列的单调有界法则,柯西收敛准则,重要极限
3.函数极限
(1) 函数极限的ε一M定义和ε一δ定义,单侧极限
(2) 函数极限的性质
(3) 海涅定理(归结原则),柯西收敛准则,两个重要极限
(4) 无穷小量与无穷大量的定义、性质,无穷小(大)量阶的比较
4.函数的连续性
(1) 函数在一点连续,单侧连续和在区间上连续的定义, 间断点的类型
(2) 连续函数的局部性质。复合函数的连续性,反函数的连续性。闭区间上连续函数的性质。
(3) 一致连续的定义,初等函数的连续性
5.导数与微分
(1) 导数的定义,导数的几何意义
(2) 导数四则运算、反函数导数、复合函数导数,求导法则与求导公式
(3) 参数方程所确定的函数的导数,高阶导数
(4) 微分概念、微分基本公式,微分法则,一阶微分形式的不变性。 微分在近似计算中的应用,高阶微分
6.微分中值定理及其应用
(1) 费马定理,罗尔定理,拉格朗日定理
(2) 柯西中值定理,罗比达法则,不定式极限
(3) 泰勒公式
(4) 函数的单调性、凸性与拐点、极值与最值
(5) 渐近线,函数作图。
7.实数的完备性
(1)区间套定理,柯西收敛准则,聚点定理,有限覆盖定理, 致密性定理
(2)闭区间上连续函数的性质及证明
8.不定积分
(1)原函数与不定积分的概念,基本积分表,线性运算法则
(2)换元积分法,分部积分法
(3)有理函数的积分法。可化为有理函数的某些类型函数的积分
9.定积分
(1)定积分的概念,牛一莱定理
(2)可积的必要条件, 达布上下和,可积的充要条件,可积函数类
(3)定积分的性质:线性性质,区间可加性,单调性, 绝对可积性,积分第一、第二中值定理
(4)微积分学基本定理。换元积分法与分部积分法。 泰勒公式的积分型余项
10.定积分的应用
(1)平面图形之面积,由截面之面积求立体体积
(2)平面曲线的弧长与曲率,旋转曲面的面积
(3)功,液体的压力,引力
11.反常积分
(1)无穷限反常积分
(2)无界函数的反常积分
12.数项级数
(1)级数的收敛性与和的概念,柯西收敛准则, 收敛级数的基本性质
(2)正项级数收敛性的一般判别法, 比式判别法与根式判别法,积分判别法
(3)绝对收敛与条件收敛,交错级数,莱布尼兹判别法,阿贝尔判别法与狄利克雷判别法
13.函数列与函数项级数
(1)函数列与函数项级数的收敛性与一致收敛性,一致收敛的柯西准则,M一判别法, 阿贝尔判别法,狄利克雷判别法
(2)函数列极限函数与函数项级数的和函数的连续性、逐项积分与逐项微分
14.幂级数
(1)阿贝尔定理,收敛半径与收敛区间, 幂级数的性质:收敛区间内闭一致收敛性、连续性、逐项积分与逐项微分,四则运算
(2)初等函数的幂级数展开
15.Fourier级数
(1)三角级数,三角函数系的正交性,付里叶级数,以2L为周期的付里叶级数, 收敛定理。
(2)以2L为周期的函数的付氏级数, 偶函数与奇函数的付氏级数。
(3)收敛定理的证明。
16.多元函数的极限与连续
(1)二元函数的定义,二元函数的极限
(2)二元函数极限的局部性质,二元函数的连续性,有界闭区域上连续函数的性质
要求:
17.多元函数微分学
(1)可微性与全微分的概念, 偏导数的定义与几何意义,全微分存在条件,可微性的几何意义
(2)复合函数的偏导数,复合函数的全微分,一阶微分形式的不变性
(3)方向导数与梯度
(4)高阶偏导数,二元函数的中值定理与泰勒公式,二元函数的极值
18.隐函数定理及其应用
(1) 隐函数定理,隐函数求导法
(2) 隐函数组定理、隐函数组求导法,反函数组与坐标变换
(3) 平面曲线的切线与法线, 空间曲线的切线与法平面,曲面的切平面与法线
(4) 条件极值与拉格朗日乘数法
19.含参量积分
(1)含参量正常积分的概念和性质
(2)含参量非正常积分的收敛与一致收敛,一致收敛的柯西准则,维尔斯特拉斯判别法,连续性,可微性,可积性
(3)欧拉积分(函数和函数)
20.曲线积分
(1)第一型曲线积分
(2)第二型曲线积分
21.重积分
(1)二重积分的定义,二重积分的性质与计算
(2)格林公式,曲线积分与路径无关的条件
(3)二重积分的换元积分法:极坐标变换与一般坐标变换
(4)三重积分的定义与计算, 三重积分的换元积分法:柱坐标变换,球坐标变换,一般坐标变换
(5)重积分的应用
22.曲面积分
(1)第一型曲面积分
(2)第二型曲面积分
(3)高斯公式与斯托克斯公式
23.向量函数微分学
(1) n维欧式空间和向量函数
(2) 向量函数的微分
(3) 反函数定理和隐函数定理
三、考试要求
1.理解确界概念与确界原理,并能运用于有关命题的运算与证明。深刻理解函数的意义,掌握函数的四则运算。
2. 深刻理解数列极限的ε一N定义,并会运用它验证给定数列的极限;掌握数列极限的性质,并会运用它证明或计算给定数列的极限;掌握数列极限存在的充要条件与充分条件,并能运用这些条件证明或判断数列极限的存在性;掌握重要极限并能运用它计算某些数列极限。
3. 理解各类函数极限的定义,并能按定义验证给定的函数极限;掌握函数极限的性质,并能用它证明或计算给定的函数极限。掌握函数极限的归结原则,并能用它来判断函数极限的存在性和计算某些数列极限。掌握函数极限的柯西准则,了解单侧极限的单调有界定理;熟练掌握两个重要极限,并运用它们进行有关函数极限的计算;掌握各类无穷小量与无穷大量的定义与性质,理解无穷小(大)量的阶的概念。
4. 深刻理解函数连续性概念,掌握间断点的概念及分类;掌握连续函数的局部性质以及复合函数和反函数的连续性,掌握闭区间上连续函数的性质;理解函数在区间上一致连续概念,并能用定义验证给定函数在某区间上为一致连续或非一致连续。
5. 深刻理解导数概念,并能用定义求某些函数在一点的导数,清楚可导与连续的关系;掌握求导法则与技巧,能熟练地用它们计算可导函数的导数;理解可微性概念,并能用于近似计算。理解高阶导数的概念,掌握计算方法。掌握参数方程所确定函数的求导方法。
6. 深刻理解中值定理的分析意义与几何意义,会证明中值定理,学会用作辅助函数证明问题的方法。会用中值定理论证问题;熟练掌握罗比达法则,并能迅速准确地计算出各种不定式极限;理解泰勒定理的内容与意义,会用泰勒公式解题;掌握应用导数研究函数单调性、极值和凹凸性的方法。知道描绘函数图象的步骤和方法。
7. 理解描绘实数完备性的几个定理的意义,并能运用它们论证一些理论问题。掌握闭区间上连续函数的性质和有关命题证明的技巧。
8. 掌握原函数与不定积分概念、不定积分的运算法则;掌握换元积分法与分部积分法、分解有理函数为部分分式的方法;掌握某些可有理化函数的不定积分的求法。
9. 深刻理解定积分的概念与意义。理解可积分的必要条件、充要条件,初步掌握判断函数是否可积的基本方法;熟练掌握定积分的性质,并能用它证明某些有关问题;深刻理解微积分学基本定理的意义,并具有应用它证明有关定积分问题的能力;熟练掌握与应用牛一莱公式,熟练掌握计算定积分的基本方法和技巧。
10. 熟练地应用定积分来计算平面图形的面积,曲线弧长及曲率,旋转体的表面积与体积,以及掌握由截面面积函数求体积的基本方法;能运用定积分解决某些物理问题。
11. 深刻理解反常积分的各类收敛性概念,掌握反常积分的收敛判别法。
12. 掌握级数敛散性定义及意义,熟练掌握级数敛散性判别法;掌握收敛级数与绝对收敛级数的性质,具有应用级数收敛性定义和收敛级数的性质证明级数中一些理论问题的能力。
13. 深刻理解一致收敛概念,熟练掌握一致收敛定义及其否定叙述,并能用一致收敛定义或判别法判断函数项级数的一致收敛性;牢记有关性质定理的条件,并能用它们讨论和函数(或极限函数)的分析性质。
14. 掌握幂级数的性质,会求收敛半径,会求一些幂级数的和函数;记住某些典型的初等函数的幂级数展式,并能将一些简单函数展成幂级数。
15. 理解收敛定理的意义;会将函数展开成付里叶级数;会利用某些展式求一些特殊数项级数的和。
16. 掌握平面点集的一些概念:聚点、内点、开集、闭集、开域、闭域等。掌握平面点集的基本定理。掌握二元函数定义,掌握重极限与累次极限定义;会求重极限与累次极限;掌握累次极限换序的条件;掌握二元函数连续与一致连续的定义,以及有界闭域上连续函数的性质。
17. 掌握偏导数的定义及求偏导数的运算;理解全微分的概念及意义,会求多元函数的全微分;能够将简单的二元函数展成泰勒级数,掌握二元函数的中值定理;会求二元函数的局部极值和最大(小)值。掌握方向导数定义,会求方向导数。
18. 理解隐函数的概念与意义,掌握由一个方程确定隐函数的充分条件;知道二元函数组在一点的邻域内存在反函数组的条件,会求隐函数及隐函数组的导数或偏导数及高阶导数或偏导数;会求函数组的函数行列式,并掌握函数行列式的性质;会求平面曲线的切线与法线, 空间曲线的切线与法平面,曲面的切平面与法线;掌握条件极值的必要条件,并会用拉格朗日乘数法求条件极值。
19. 掌握含参量正常积分的概念、连续性、可积性与可微性,积分顺序的交换;掌握含参变量非正常积分所定义的函数的分析性质及其证明。掌握含参量非正常积分的一致收敛定义及其判别法,会应用积分号下可微性和可积性来计算一些非正常积分的值;会用函数和函数计算一些积分的值。
20. 掌握第一型曲线积分的概念及物理意义,熟练计算第一型曲线积分;掌握第二型曲线积分概念,会计算第二型曲线积分。
21. 掌握二重积分的定义、可积条件、性质,几何意义;掌握格林公式的条件与结论,并会证明和应用格林公式;掌握曲线积分与路线无关的条件,并能用它计算第二型曲线积分;掌握二重积分的计算方法;掌握三重积分的定义、物理意义及性质,能灵活地运用柱坐标变换和球坐标变换计算三重积分;能用重积分解决一些几何与物理问题。
22. 掌握第一型曲面积分的概念及物理意义,能熟练计算第一型曲面积分;掌握第二型曲面积分概念及性质,会计算第二型曲面积分;掌握高斯公式与斯托克斯公式的条件与结论,并会证明定理, 会运用这两个定理解决问题。
23. 掌握向量函数、向量函数极限、连续、一致连续的概念;掌握向量函数可微性与可微的条件,可微函数的性质,极值的必要条件。掌握反函数定理及其应用。
四、试题结构
题型一
1、名词解释(约占20分)
2、填空题(约占20分)
3、单项选择题(约占20分)
4、简答题(约占20分)
5、计算题(约占30分)
6、证明题(约占40分)
题型二
证明题10道(每题15分,共150分)
五、考试方式及时间
考试方式为闭卷、笔试,时间为3小时,满分为150分。
六、主要参考资料
《数学分析》(第四版,上、下册),华东师范大学数学系,北京:高等教育出版社,2010年7月。
《数学分析》(第二版,一、二、三册),徐森林等编著,北京:清华大学出版社,2020年5月。
《数学分析》(第三版,上下册),陈纪修等编著,北京:高等教育出版社,2019年4月。
北京林业大学
添加北京林业大学学姐微信,或微信搜索公众号“考研派小站”,关注[考研派小站]微信公众号,在考研派小站微信号输入[北京林业大学考研分数线、北京林业大学报录比、北京林业大学考研群、北京林业大学学姐微信、北京林业大学考研真题、北京林业大学专业目录、北京林业大学排名、北京林业大学保研、北京林业大学公众号、北京林业大学研究生招生)]即可在手机上查看相对应北京林业大学考研信息或资源。
本文来源:http://www.okaoyan.com/beijinglinyedaxue/cankaoshumu_461363.html
推荐阅读
-
2022年北京林业大学硕士研究生考试科目706《风景园林建筑设
一、大纲综述《风景园林建筑设计》是一门快题设计考试,检验考生的建筑设计实战能力。要求在规定考试时间内,根据试题设计任务书要求,在指定地块内设计一座小型风景园林建筑。建筑规模……
日期:08-30 阅读量:23743 -
2022年北京林业大学硕士研究生考试科目503《园林设计》考试
一、大纲综述《园林设计》是一门快题设计考试,检验考生的园林设计实战能力。要求在规定考试时间内,根据试题设计任务书要求,完指定成场地的设计。场地规模及功能按当年试题具体要求。……
日期:08-30 阅读量:24426 -
2022年北京林业大学硕士研究生考试科目344《风景园林基础》
一、大纲综述《风景园林基础》是一门闭卷考试,通过试题作答,检验考生对风景园林基础知识的掌握。二、考试内容考试内容由中外园林史、城市绿地系统规划、园林植物与应用等共三部分组成……
日期:08-30 阅读量:21996 -
2022年北京林业大学硕士研究生考试科目701《生物化学》考试
一、考试大纲的性质生物化学课程是生物学专业重要的专业基础课,是林学、园林植物学、环境学等专业的选修课,它是报考理科植物学、生化和分子生物学、遗传育种学等专业研究生的考试科目……
日期:08-30 阅读量:23987 -
2022年北京林业大学硕士研究生考试科目710《建筑史》考试大
一、大纲综述建筑史是建筑学本科课程中最重要的一门专业理论课,对于它的学习不仅能使学生了解中外建筑史的发展概况、规律,而且能为学生提供各种设计信息,这对于建筑学的学生来讲是至……
日期:08-30 阅读量:22473 -
2022年北京林业大学硕士研究生考试科目702《城乡规划基础理
一、大纲综述《城乡规划基础理论》为城乡规划学()学术型硕士研究生和城市规划()专业硕士初试科目。二、考试内容考查城乡规划基本概念、基本原理、中外城市建设历史相关知识,以及考……
日期:08-30 阅读量:24668 -
2022年北京林业大学硕士研究生考试科目502《建筑设计(六小时
一、大纲综述建筑设计基础是建筑学本科课程中最重要的专业课程,通过学习要掌握建筑设计的基本概念和综合能力,不仅使学生能够系统地掌握建筑设计的基本原理和基本方法,具备较强的方案……
日期:08-30 阅读量:23855 -
2022年北京林业大学硕士研究生考试科目501《城市设计(六小时
一、大纲综述《城市设计(六小时)》为城乡规划学()学术型硕士研究生和城市规划()专业硕士初试(可选)科目。二、考试内容内容:完成城市公共中心、历史地段、居住区、滨水开放空间……
日期:08-30 阅读量:2597 -
2022年北京林业大学硕士研究生考试科目434《国际商务专业基
一、大纲综述国际商务专业基础综合了国际贸易理论与政策、国际投资与经营、国际金融、国际营销等学科相关知识,是北京林业大学经济管理学院国际商务专业硕士研究生的入学考试科目。为帮……
日期:08-30 阅读量:22435 -
2022年北京林业大学硕士研究生考试科目845《西方经济学》考
西方经济学是应用经济学学科和农林经济管理学科硕士研究生入学考试科目。为帮助考生明确考试复习范围和有关要求,特制定本考试大纲。一、考试内容微观经济学部分约占,宏观经济学部分约……
日期:08-30 阅读量:21626 -
2022年北京林业大学硕士研究生考试科目828《农林经济学综合
《农林经济学综合》考试共包括农业经济学和林业经济学两大部分,各部分考试大纲分述如下:一、农业经济学(部分)一大纲综述《农业经济学》是报考农村发展和农业管理专业硕士研究生的专……
日期:08-30 阅读量:21109 -
2022年北京林业大学硕士研究生考试科目342《农业知识综合四
《农业知识综合四》考试共包括农村社会学、农业政策学和管理学三部分,各部分考试大纲分述如下:一、农村社会学(部分)一大纲综述《农村社会学》是报考北京林业大学农村发展和农业管理……
日期:08-30 阅读量:24067 -
2022年北京林业大学硕士研究生考试科目809《园林植物》考试
一、大纲综述园林植物学是研究园林树木、园林花卉、园林草坪植物的种类、分类、生态习性、观赏特性、繁殖、栽培、养护管理、园林植物选择及配植应用的一门科学。是高等院校园林专业、观……
日期:08-30 阅读量:22926 -
2022年北京林业大学硕士研究生考试科目703《园林植物遗传育
一、大纲综述《园林植物遗传育种学》是研究园林植物主要观赏性状遗传变异规律并利用这些规律对园林植物品质进行改良的一门科学;是高等院校园林专业、观赏园艺专业及农学、工学等相关专……
日期:08-30 阅读量:2834 -
2022年北京林业大学硕士研究生考试科目860《美术创作》考试
一、大纲综述《美术创作》是针对艺术硕士美术领域考生而设置的研究生入学考试科目。不分专业方向,统一命题。主要考察考生的基础造型、构图和专业技能表现能力,创作构思和艺术表达能力……
日期:08-30 阅读量:22583 -
2022年北京林业大学硕士研究生考试科目855《自动控制原理》
一、大纲综述《自动控制原理》是北京林业大学电子信息(控制方向)专业学位硕士研究生入学考试的专业课程考试科目。二、考试内容掌握控制系统的时域、频域数学模型及梅逊公式及其应用;……
日期:08-30 阅读量:22621 -
2022年北京林业大学硕士研究生考试科目848《英汉互译与英语
一、大纲综述英汉互译与英语国家文化是英汉互译技能和英语国家相关文化知识考试,是英语类考生报考我校外国语言文学学术型研究生的专业考试科目之一。为帮助考生明确考试复习范围和有关……
日期:08-30 阅读量:22695 -
2022年北京林业大学硕士研究生考试科目846《现代林业理论与
一、大纲综述《现代林业理论与实践》是报考林业专业硕士研究生的考试科目之一。重点考核森林培育学、森林经理学两门林学专业核心课程,要求考生掌握森林培育学、森林经理学基本理论、方……
日期:08-30 阅读量:22862 -
2022年北京林业大学硕士研究生考试科目843《土壤学》考试大
一、大纲综述土壤学是农林环境、生物地学等专业的主干课程,也是报考林业院校土壤学科研究生的专业基础课考试课目。为了帮助考生明确考试复习范围和有关的要求,特制定本考试大纲。适用……
日期:08-30 阅读量:23080 -
2022年北京林业大学硕士研究生考试科目842《当代中国马克思
一、大纲综述《当代中国马克思主义理论与实践》考试内容包括《毛泽东思想和中国特色社会主义理论体系概论》、《中国近现代史纲要》、《思想政治教育学原理》。主要从史、论以及思想政治……
日期:08-30 阅读量:23205