东南大学管理科学与工程系导师介绍:李敏

发布时间:2015-09-25 编辑:考研派小莉 推荐访问:东南大学
东南大学管理科学与工程系导师介绍:李敏

东南大学管理科学与工程系导师介绍:李敏内容如下,更多考研资讯请关注我们网站的更新!敬请收藏本站,或下载我们的考研派APP和考研派微信公众号(里面有非常多的免费考研资源可以领取,有各种考研问题,也可直接加我们网站上的研究生学姐微信,全程免费答疑,助各位考研一臂之力,争取早日考上理想中的研究生院校。)

东南大学管理科学与工程系导师介绍:李敏 正文

 ►个人简介
  李敏
  女,1980年生
  博士,东南大学经济管理学院教授,博士生导师
  电子邮箱:limin@seu.edu.cn

  2012年先后入选高校青蓝工程优秀青年骨干教师培养对象、教育部新世纪优秀人才支持计划等,主持完成了国家自然科学基金项目、高等学校博士学科点专项科研基金等。

  ►研究方向
  最优化理论与方法,变分不等式理论、算法及其在管理科学上的应用

  ►个人简历
  教育背景
  2002/09– 2007/06,南京大学数学系, 计算数学, 博士
  1998/09– 2002/07,南京大学数学系, 信息与计算科学, 学士
  研究工作经历
  2014/04– 至今,东南大学,经济管理学院,教授
  2012/01– 至今,东南大学,经济管理学院,博士生导师
  2009/12– 至今,东南大学,经济管理学院,硕士生导师
  2009/04– 2014/04,东南大学,经济管理学院,副教授
  2007/06– 2009/04,东南大学,经济管理学院,讲师
  2013/06– 2013/08,香港浸会大学,数学系,学术访问
  2012/07– 2012/09,香港浸会大学,数学系,学术访问
  2010/04– 2010/07,新加坡国立大学,数学系,学术访问
  2007/09– 2008/03,香港浸会大学,数学系,学术访问
  2006/10– 2007/02,香港浸会大学,数学系,研究助理

  ►科研与教学项目
  [1] 线性约束凸优化扩展问题的投影收缩算法研究,江苏省自然科学基金—面上项目,2012.7-2015.6,主持(第二负责人)
  [2] 带有秩约束的最小二乘半定规划问题的数值算法,国家自然科学基金—青年基金,2011.1-2013.12,主持
  [3] 广义变分不等式模型及算法,国家自然科学基金—天元基金,2010.1-2010.12,主持
  [4] 零售业供应链中的综合定价策略,高等学校博士学科点专项科研基金-新教师基金,2009.1 -2011.12,主持
  [5] 教育部新世纪优秀人才支持计划,2013.1 -2015.12,主持
  [6] 高校青蓝工程优秀青年骨干教师培养对象,2012.12 -2015.12,主持
  [7] 东南大学优秀青年教师教学科研资助计划,2011.1 -2013.12,主持

  ►专著及论文
  [1] 李敏, D. F. Sun and K.-C. Toh, A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block, accepted by Asia-Pacific Journal of Operational Research, Nov., (2014).
  [2] C.H. Chen, 李敏and X. M. Yuan, Further study on the convergence rate of alternating direction method of multipliers with logarithmic-quadratic proximal regularization, Journal of Optimization Theory and Applications, DOI 10.1007/s10957-014-0682-8 , Nov., (2014).
  [3] 李敏and X. M. Yuan, A strictly contractive Peaceman-Rachford splitting method with logarithmic-quadratic proximal regularization for convex programming, accepted by Mathematics of Operations Research, Jul., (2014).
  [4] 李敏,Z.K. Jiang and Z.J. Zhou, Dual-primal proximal point algorithms for extended convex programming, International Journal of Computer Mathematics, DOI 10.1080/00207160.2014. 945920, Aug., (2014). SCI收录
  [5] 李敏,X.X. Li and X.M. Yuan, Convergence analysis of the generalized alternating direction method of multipliers with logarithmic-quadratic proximal regularization, Journal of Optimization Theory and Applications, DOI 10.1007/s10957-014-0567-x , May, (2014). SCI收录
  [6] 李敏and Z.K. Jiang, The PPA-based numerical algorithm with the O(1/t) convergence rate for variant variational inequalities, Optimization Letters, vol.8(4), pp. 1487-1500, Apr., (2014).SCI收录
  [7] H.W. Xu and李敏, On the O(1/t) convergence rate of the LQP prediction-correction method, Optimization Letters, vol.8(1), pp. 319-328, Jan., (2014).SCI收录
  [8] 李敏,L.-Z. Liao and X.M. Yuan, Inexact alternating direction method of multipliers with logarithmic-quadratic proximal regularization, Journal of Optimization Theory and Applications, vol.159, pp. 412-436, Nov., (2013).SCI收录
  [9] 李敏, A hybrid LQP-based method for structured variational inequalities, International Journal of Computer Mathematics, vol.89(10), pp. 1412-1425, Jul., (2012).SCI收录
  [10] 李敏and X.M. Yuan, Some proximal algorithms for linearly constrained general variational inequalities, Optimization, vol.61(5), pp. 505-524, May, (2012). SCI收录
  [11] X.M. Yuan and李敏, An LQP-based decomposition method for solving a class of variational inequalities, SIAM Journal on Optimization, vol.21, pp. 1309-1318,Nov., (2011). SCI收录
  [12] 李敏, L.-Z. Liao and X.M. Yuan, Some Goldstein's type methods for co-coercive variant variational inequalities, Applied Numerical Mathematics, vol. 61(2), pp. 216-228, Feb., (2011).SCI收录
  [13] 李敏and W. Zhong, An LQP-based descent method for structured monotone variational inequalities, Journal of Computational and Applied Mathematics, vol. 235(5), pp. 1523-1530, Jan., (2011). SCI、EI收录
  [14] A.Bnouhachem, 李敏, M. Khalfaoui and Z.H. Sheng, A modified inexact implicit method for mixed variational inequalities, Journal of Computational and Applied Mathematics, vol. 234(12), pp. 3356-3365, Oct., (2010). SCI、EI收录
  [15] 李敏and X.M. Yuan, An improved LQP-based method for solving nonlinear complementarity problems, Frontiers of Mathematics in China, vol. 5, pp. 23-35, Jan., (2010). SCI收录
  [16] M. H. Xu, 李敏and C. C. Yang, Neural networks for a class of bi-level variational inequalities, Journal of Global Optimization, vol. 44, pp. 535-552, Aug., (2009). SCI、EI收录
  [17] 李敏,L.-Z. Liao and X.M. Yuan, Proximal point algorithms for general variational inequalities, Journal of Optimization Theory and Applications, vol. 142, pp. 125-145, Jul., (2009). SCI收录
  [18] B.S. He, 李敏and L.-Z. Liao, An improved contraction method for structured monotone variational inequalities, Optimization, vol. 57(5), pp. 643-653, Oct., (2008). SCI收录
  [19] 李敏,L.-Z. Liao and X.M. Yuan, A modified descent method for co-coercive variational inequalities, European Journal of Operational Research, vol. 189(2), pp. 310-323, Sep., (2008). SCI、EI收录
  [20] 李敏and A. Bnouhachem, A modified inexact operator splitting method for monotone variational inequalities, Journal of Global Optimization, vol. 41, pp. 417-426, Jul., (2008). SCI、EI收录
  [21] 李敏and X.M. Yuan, An APPA-based descent method with optimal step-sizes for monotonevariational inequalities, European Journal of Operational Research, vol. 186(2), pp. 486-495, Apr., (2008). SCI、EI收录
  [22] 李敏and X.M. Yuan, An improved Goldstein's type method for a class of variant variational inequalities, Journal of Computational and Applied Mathematics, vol. 214(1), pp. 304-312, Apr., (2008). SCI、EI收录
  [23] 李敏,A new generalized APPA for maximal monotone operators, Applied Mathematics Letters, vol. 21(2), pp. 181-186, Feb., (2008). SCI、EI收录
  [24] 李敏and X.M. Yuan, An improved proximal-based decomposition method for structured monotone variational inequalities, Applied Mathematics and Mechanics, vol. 28(12), pp. 1659-1668, Dec. (2007). SCI、EI收录
  [25] 李敏,H. Shao and B.S. He, An inexact logarithmic-quadratic proximal augmented Lagrangian method for a class of constrained variational inequalities, Mathematical Methods of Operations Research, vol. 66(2), pp. 183-201, Oct. (2007). SCI、EI收录
  [26] 李敏and M.H. Xu, Comparison of two proximal point algorithms for monotone variational inequalities, Computers & Mathematics with Applications, vol. 52, pp. 1543-1554, Nov., (2006). SCI、EI收录 以上老师的信息来源于学校网站,如有更新或错误,请联系我们进行更新或删除,联系方式

添加东南大学学姐微信,或微信搜索公众号“考研派小站”,关注[考研派小站]微信公众号,在考研派小站微信号输入[东南大学考研分数线、东南大学报录比、东南大学考研群、东南大学学姐微信、东南大学考研真题、东南大学专业目录、东南大学排名、东南大学保研、东南大学公众号、东南大学研究生招生)]即可在手机上查看相对应东南大学考研信息或资源

东南大学考研公众号 考研派小站公众号
东南大学

本文来源:http://www.okaoyan.com/dongnandaxue/daoshi_22227.html

推荐阅读