宁波大学海运学院导师:葛红霞

发布时间:2021-11-20 编辑:考研派小莉 推荐访问:
宁波大学海运学院导师:葛红霞

宁波大学海运学院导师:葛红霞内容如下,更多考研资讯请关注我们网站的更新!敬请收藏本站,或下载我们的考研派APP和考研派微信公众号(里面有非常多的免费考研资源可以领取,有各种考研问题,也可直接加我们网站上的研究生学姐微信,全程免费答疑,助各位考研一臂之力,争取早日考上理想中的研究生院校。)

宁波大学海运学院导师:葛红霞 正文

[导师姓名]
葛红霞

[所属院校]
宁波大学

[基本信息]
导师姓名:葛红霞
性别:女
人气指数:2389
所属院校:宁波大学
所属院系:海运学院
职称:教授
导师类型:
招生专业:船舶与海洋工程、港航技术与管理工程、渔业设施与装备
研究领域:现代航运与交通技术/港航技术与管理工程



[通讯方式]
电子邮件:gehongxia@nbu.edu.cn

[个人简述]
葛红霞,女,1977年出生,教授,博士生导师, 物流与交通运输研究所骨干教师。 《物理学报》和《Chinese Physics B》受聘审稿人。2007年获得浙江省教育厅“高校优秀青年资助计划”,博士论文获得“2007年度上海市研究生优秀成果(学位论文)”, “2008年全国优秀博士学位论文提名论文”。2009年入选“浙江省新世纪151人才工程”第三层次培养计划。香港城市大学访问学者。
研究领域:交通流建模、密度波分析、交通控制、行人流
研究项目:2007年主持国家自然科学基金(青年)“面向智能交通系统的交通流建模与密度波分析”已顺利结题;2010年又获得国家基金委数理学部面上基金立项资助“基于视频的交通流建模及其参数全息标定研究”;2015年获得国家自然科学基金面上项目和浙江省自然科学基金面上项目各一项;完成了浙江省教育厅和宁波市自然基金课题各2项,正在主持浙江省教育厅重点项目一项,宁波市自然基金一项,参加了一项国家重大基础研究发展计划(973计划)资助项目(2006CB705502)中的一项子课题。
研究成果:迄今为止,已撰写交通方面SCI论文60多篇,合计引用约600余次。指导研究生数十名,均有SCI论文发表。指导的研究生孟祥佩获“2013年浙江省优秀毕业生”称号。指导的研究生多人获得国家奖学金、浙江省优秀毕业生、宁波大学优秀毕业生、优秀毕业论文等等。

[科研工作]
迄今为止,已撰写交通方面SCI论文60多篇,合计引用约600余次。
1) Ge H.X., Meng X.P., Cheng R.J. and Lo S.M., Time-dependent Ginzburg–Landau equation in a car-following model considering the driver’s physical delay, Physica A, 390, 20, 3348-3353, 2011.
2) Ge H.X., Modified coupled map car-following model and its delayed feedback control scheme, Chin. Phys. B, 20, 9, 090502, 2011.
3) Ge H.X., Wu S.Z., Cheng R.J. and Lo S.M., Theoretical analysis of a modified continuum model, Chin. Phys. Lett., 28, 9, 090501, 2011.
4) Wu S.Z., Cheng R.J. and Ge H.X.*, Time-dependent Ginzburg–Landau equation for two velocity Difference model, Chin. Phys. B, 20, 8, 080304, 2011.
5) Ge H.X. and Lo S.M., The KdV–Burgers equation in speed gradient viscous continuum model, Physica A, 391, 1652-1656, 2012
6) Ge H.X., Liu Y.X. and Cheng R.J., A modified coupled map car following model and its traffic congestion analysis, Communications in Nonlinear Science and Numerical Simulation, 17(11), 4439-4445, 2012
7) Ge H.X., Meng X.P., Ma J. and Lo S.M., An improved car-following model considering influence of other factors on traffic jam, Physics Letters A, 377, 9, 2012
8) Ge H.X., Zhang Y.Q., Kuang H. and Lo S.M., The TDGL equation for car-following model with consideration of the traffic interruption probability, International Journal of Modern Physics C, 23, 7, 1250053, 2012.
9) Ge H.X., Yu J. and Lo S.M., A control method for congested traffic in the car-following model, Chin. Phys. Lett., 29, 5, 050502, 2012.
10) Ge H.X., Liu Y.Q. and Cheng R.J., Element-free Galerkin (EFG) method for time fractional partial differential equation, Chin. Phys. B, 21, 1, 010206-1-6, 2012
11) Ge H.X., Lai L.L., Zheng P.J. and Cheng R.J., The KdV–Burgers equation in a new continuum model with consideration of driver’s forecast effect and numerical tests, Physics Letters A , 377, 3193–3198, 2013.
12) Lai L.L., Cheng R.J., Li Z.P. and Ge H.X.*, The KdV–Burgers equation in a modified speed gradient continuum model, Chin. Phys. B, 22, 6, 060511, 2013.
13) Ge H.X., Cheng R.J. and Lo S.M., Time-dependent Ginzburg Landau equation for lattice hydrodynamic model describing pedestrian flow, Chin. Phys. B, 22, 7, 070507, 2013.
14) Liu Y.Q., Cheng R.J. and Ge H.X.*, An element-free Galerkin (EFG) method for numerical solution of the coupled Schr¨odinger-KdV equations, Chin. Phys. B, 22, 10, 100204, 2013.
15) Shi T.Y., Cheng R.J. and Ge H.X.*, An element-free Galerkin (EFG) method for generalized Fisher equations (GFE), Chin. Phys. B, 22, 6, 060210, 2013.
16) Xu L., Lo S.M. and Ge H.X.*, The Korteweg-de Vires equation for the bidirectional pedestrian flow model considering the next-nearest-neighbor effect, Chin. Phys. B, 22, 12, 120508, 2013.
17) Xu L., Lo S.M. and Ge H.X.*, The Korteweg-de Vires equation for bidirectional pedestrian flow model, Procedia Engineering, 52, 495-499, 2013.
18) Zheng Y.Z., Zheng P.J. and Ge H.X.*, An improved car-following model with considering lateral effect and its feedback control research, Chin. Phys. B, 23, 2, 020503, 2014.
19) Cheng R.J., Han X.L., Lo .M. and Ge H.X.*, A control method applied to mixed traffic flow for the coupled-map car-following model, Chin. Phys. B, 23, 3, 030507, 2014
20) Ge H.X. and Cheng R.J., A meshless method based on moving Kriging interpolation for a two-dimensional time-fractional diffusion equation, Chin. Phys. B, 23, 4, 040203, 2014
21) Ge H.X., Lv F., Zheng P.J. and Cheng R.J., The time-dependent Ginzburg–Landau equation for car-following model considering anticipation-driving behavior, Nonlinear Dyn., 76, 1497-1501, 2014
22) Ge H X, Zheng P J, Wang W, Cheng R J*, The car following model considering traffic jerk, Physica A, 2015, 433: 274-278
23) Ge H X, Cui Y, Zhu K Q, Cheng R J*, The control method for the lattice hydrodynamic model, Commun Nonlinear Sci Numer Simulat, 2015, 22: 903-908
24) Liu H Q, Cheng R J, Zhu K Q, Ge H X*, The study for continuum model considering traffic jerk effect, Nonlinear dynamics, 2015,83 (1-2): 1-8.
25) Liu F X, Cheng R J, Zheng P J, Ge H X*, TDGL and mKdV equations for car-following model considering traffic jerk, Nonlinear dynamics. 2015, 82: 1-8.
26) Cheng R. J., Ge H. X., Wu Y., The Numerical Analysis of Two-Sided Space-Fractional Wave Equation with Improved Moving Least-Square Ritz Method, Mathematical Problems in Engineering, 2016, 2016:1-9 (SCI)
27) Liu F.X., Cheng R. J.,*, Ge H.X., Lo S.M., An improved car-following model considering the influence of optimal velocity for leading vehicle, Nonlinear Dyn (2016) 85:1469–1478, (SCI)
28) Zheng Y.Z, Cheng R.J., Lo S.M., Ge H.X., Stability analysis of traffic flow with extended CACC control models, Chin. Phys. B Vol. 25 No. 6 (2016) 060505(SCI)
29) Liu F.X., Cheng R.J., Zheng P.J., Ge H.X., TDGL and mKdV equations for car-following model considering traffic jerk, Nonlinear Dyn (2016) 83:793–800(SCI)
30) Liu H.Q., Cheng R. J., Zhu K.Q., Ge H.X., The study for continuum model considering traffic jerk effect, Nonlinear Dyn (2016) 83:57–64(SCI)
31) Song Han, Ge Hongxia, Chen Fuzhou, Cheng Rongjun*, TDGL and mKdV equations for car-following model considering traffic jerk and velocity difference, Nonlinear Dyn ,2017, 87(3):1809-1817 (SCI)
32) Cheng R J, Ge H X, Wang J F, An extended continuum model accounting for the driver’s timid and aggressive attributions, Physics Letters A, 2017, 381(15):1302-1312.
33) Wang Y N, Cheng R J*, Ge H X, A lattice hydrodynamic model based on delayed feedback control considering, Physica A, 2017, 479: 478–484.
34) Cheng R J, Liu F X, Ge H X*, A new continuum model based on full velocity difference model considering traffic jerk effect, Nonlinear Dyn, 2017, (SCI)
35) Cheng R J, Ge H X, Wang J F, KdV-Burgers equation in a new continuum model based on full velocity difference model considering anticipation effect,Physica A, 2017, 481: 52–59.
1、2007年主持国家自然科学基金(青年)“面向智能交通系统的交通流建模与密度波分析”已顺利结题
2、2010年又获得国家基金委数理学部面上基金立项资助“基于视频的交通流建模及其参数全息标定研究”
3、2015年获得国家自然科学基金面上项目和浙江省自然科学基金面上项目各一项
4、完成了浙江省教育厅和宁波市自然基金课题各2项
5、正在主持浙江省教育厅重点项目一项,宁波市自然基金一项,参加了一项国家重大基础研究发展计划(973计划)资助项目(2006CB705502)中的一项子课题。

[教育背景]
以上老师的信息来源于学校网站,如有更新或错误,请联系我们进行更新或删除,联系方式

添加宁波大学学姐微信,或微信搜索公众号“考研派小站”,关注[考研派小站]微信公众号,在考研派小站微信号输入[宁波大学考研分数线、宁波大学报录比、宁波大学考研群、宁波大学学姐微信、宁波大学考研真题、宁波大学专业目录、宁波大学排名、宁波大学保研、宁波大学公众号、宁波大学研究生招生)]即可在手机上查看相对应宁波大学考研信息或资源

宁波大学考研公众号 考研派小站公众号
宁波大学

本文来源:http://www.okaoyan.com/ningbodaxue/yanjiushengdaoshi_529797.html