中国地质大学(北京)70700海洋科学考研调剂报告
中国地质大学(北京)70700海洋科学考研调剂报告内容如下,更多考研资讯请关注我们网站的更新!敬请收藏本站,或下载我们的考研派APP和考研派微信公众号(里面有非常多的免费考研资源可以领取,有各种考研问题,也可直接加我们网站上的研究生学姐微信,全程免费答疑,助各位考研一臂之力,争取早日考上理想中的研究生院校。)
中国地质大学(北京)调剂上岸学姐微信 中国地质大学(北京)往年招收调剂专业 中国地质大学(北京)各专业调剂录取分数线 中国地质大学(北京)一志愿生源调剂去向 中国地质大学(北京)调剂信息汇总表.xls 中国地质大学(北京)调剂咨询微信
等珍贵数据。中国地质大学(北京)调剂上岸学姐微信
中国地质大学(北京)往年招收调剂专业
中国地质大学(北京)各专业调剂录取分数线
中国地质大学(北京)一志愿生源调剂去向
中国地质大学(北京)调剂信息汇总表.xls
中国地质大学(北京)调剂咨询微信
微信,为你答疑,送资源
中国地质大学(北京)70700海洋科学考研调剂报告 正文
以下内容由【考研派考研调剂中心】整理,最新的调剂信息、调剂分数线、调剂去向来源等信息,可微信搜索考研派考研调剂中心小程序。
专业情况:
中国地质大学(北京)院系名称:海洋学院
专业代码及名称:70700海洋科学
学习方式:全日制
历年调剂来源:
调剂生源(一志愿院校统计):中国科学院大学1人,调剂年份:2020,调剂人数: 1人,调剂最低分: 341,调剂最高分: 341,调剂中位分: 341。
一志愿院校名称:中国科学院大学,调剂年份:2020年,初试总分:341。
复试分数线:
总分:280,单科二:56,单科一:37,调剂年份:2021总分:288,单科二:60,单科一:40,调剂年份:2020
总分:290,单科二:62,单科一:41,调剂年份:2019
总分:280,单科二:57,单科一:38,调剂年份:2018
调剂专业研究方向:
调剂年份:2021年,调剂方向:01-海洋地质与资源考试科目: (201)英语一 ,专业课:(851)海洋科学导论 ,专业课:(610)高等数学 ,公共课: (101)思想政治理论
年份:2021年,调剂方向:02-微体古生物与古海洋学
考试科目: (201)英语一 ,专业课:(851)海洋科学导论 ,专业课:(610)高等数学 ,公共课: (101)思想政治理论
年份:2021年,调剂方向:04-海洋化学与资源
考试科目: (201)英语一 ,专业课:(851)海洋科学导论 ,专业课:(610)高等数学 ,公共课: (101)思想政治理论
年份:2021年,调剂方向:05-海洋生物与微生物
考试科目: (201)英语一 ,专业课:(851)海洋科学导论 ,专业课:(610)高等数学 ,公共课: (101)思想政治理论
年份:2021年,调剂方向:06-海岸带地质与环境
考试科目: (201)英语一 ,专业课:(851)海洋科学导论 ,专业课:(610)高等数学 ,公共课: (101)思想政治理论
年份:2021年,调剂方向:07-边缘海沉积盆地分析
考试科目: (201)英语一 ,专业课:(851)海洋科学导论 ,专业课:(610)高等数学 ,公共课: (101)思想政治理论
年份:2021年,调剂方向:08-海洋遥感
考试科目: (201)英语一 ,专业课:(851)海洋科学导论 ,专业课:(610)高等数学 ,公共课: (101)思想政治理论
年份:2022年,调剂方向:01-海洋地质
考试科目: (201)英语(一) ,专业课:(851)海洋科学导论 ,专业课:(610)高等数学 ,公共课: (101)思想政治理论
年份:2022年,调剂方向:02-海洋资源
考试科目: (201)英语(一) ,专业课:(851)海洋科学导论 ,专业课:(610)高等数学 ,公共课: (101)思想政治理论
年份:2022年,调剂方向:03-海洋生物
考试科目: (201)英语(一) ,专业课:(851)海洋科学导论 ,专业课:(610)高等数学 ,公共课: (101)思想政治理论
年份:2022年,调剂方向:04-海洋化学
考试科目: (201)英语(一) ,专业课:(851)海洋科学导论 ,专业课:(610)高等数学 ,公共课: (101)思想政治理论
年份:2022年,调剂方向:05-物理海洋学
考试科目: (201)英语(一) ,专业课:(851)海洋科学导论 ,专业课:(610)高等数学 ,公共课: (101)思想政治理论
参考书目:
《高等数学(610)》考试大纲与参考书目 考试性质 本门课程考试的内容为一元微积分学、常微分方程。注重考察考生对高等数学的基本理论和基本方法的掌握,评价标准是使高校优秀本科毕业生能达到及格或及格以上水平。 考试方式和考试时间 1.\t答卷方式:闭卷、笔试\n2.\t答卷时间:180分钟\n\n 试卷结构 题型比例:满分150分,填空题与选择题约30%;解答题(包括证明)约70% 考试内容和考试要求 (一)函数、极限、连续\n考试内容\n函数的概念及函数的性质 复合函数、反函数、隐函数和分段函数 基本初等函数的性质及其图形 初等函数 简单应用问题的函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质\n 考试要求\n\u3000\u30001、 理解函数的概念,掌握函数的表示法,会作函数符号运算并会建立应用问题的函数关系式。\n\u3000\u30002、 了解函数的有界性、单调性、周期性和奇偶性。\n\u3000\u30003、 理解复合函数和分段函数的概念、了解反函数和隐函数的概念。\n\u3000\u30004、 掌握基本初等函数的性质及其图形,了解初等函数的概念。\n\u3000\u30005、 理解数列极限和函数极限(包括左极限和右极限)的概念以及函数极限存在与左、右极限之间的关系。\n\u3000\u30006、掌握极限的性质及四则运算法则。\n7、理解无穷小量的概念和基本性质,掌握无穷小量的比较方法,会用等价无穷小量求极限,理解无穷大量的概念及其与无穷小量的关系。\n 8、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。\n9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。\n10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。\n (二)一元函数微分学\n 考试内容\n导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线及其方程 基本初等函数的导数 导数和微分的四则运算 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 罗尔定理(Rolle)、拉格朗日(Lagrange)中值定理、柯西(Cauchy)中值定理、 泰勒(Taylor)定理 洛必达(L′Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率半径\n 考试要求\n 1、理解导数的概念及可导性与连续性之间的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量。\n2、掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。\n3、了解高阶导数的概念,会求一些简单函数的高阶导数。\n4、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。\n\u3000 5、理解微分的概念以及导数与微分之间的关系,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。\n\u3000\u30006、理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定理。\n\u3000\u30007、掌握利用洛必达法则求未定式极限的方法。\n\u3000\u30008、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。\n\u3000\u30009、会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。\n\u3000\u300010、了解曲率和曲率半径的概念,会计算曲率和曲率半径。\n\n (三)一元函数积分学\n 考试内容\n原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用\n 考试要求\n 1、理解原函数与不定积分的概念,掌握不定积分的性质和基本积分公式,掌握不定积分的换元积分法和分部积分法。\n 2、理解定积分的概念,掌握定积分的性质和定积分中值定理,掌握定积分的换元积分法和分部积分法。\n3、会求有理函数、三角函数的有理式和简单无理函数的积分。\n4、理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。\n5、了解反常积分的概念,会计算反常积分。\n6、掌握用定积分表达和计算的一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积、平行截面面积为已知的立体体积、变力作功、引力、压力)及函数的平均值。\n(四)常微分方程\n考试内容\n常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的一些简单应用\n 考试要求\n1、了解微分方程及其阶、解、通解、初始条件和特解等概念。\n2、2、掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程和伯努利方程.。\n3、会用降阶法解下列形式的微分方程:\n , , .\n4、理解二阶线性微分方程解的性质及解的结构定理。\n5、掌握二阶常系数齐次线性微分方程的解法。\n6、会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程。\n7、会用微分方程解决一些简单的应用问题。\n 参考书目 《高等数学》,同济大学数学系编,高等教育出版社,第七版;\n《高等数学习题集》 ,同济大学应用数学系编,高等教育出版社。\n 备注601高等数学 。参考书目 冯士祚等主编,海洋科学导论,北京:高等教育出版社,1999. 备注625海洋科学导论 。中国地质大学(北京)
添加中国地质大学(北京)学姐微信,或微信搜索公众号“考研派小站”,关注[考研派小站]微信公众号,在考研派小站微信号输入[中国地质大学(北京)考研分数线、中国地质大学(北京)报录比、中国地质大学(北京)考研群、中国地质大学(北京)学姐微信、中国地质大学(北京)考研真题、中国地质大学(北京)专业目录、中国地质大学(北京)排名、中国地质大学(北京)保研、中国地质大学(北京)公众号、中国地质大学(北京)研究生招生)]即可在手机上查看相对应中国地质大学(北京)考研信息或资源。
本文来源:http://www.okaoyan.com/zhongguodizhidaxue/fushi_607040.html